МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Нижегородский государственный университет им. Н.И. Лобачевского

С.А. Ярунина

Хрестоматия
Практикум

Рекомендовано методической комиссией филологического факультета для студентов ННГУ, обучающихся по специальности

010300 «Информационные технологии»
Нижний Новгород

2014
УДК 802. 0 (075)
ББК Ш 143.2/я 73-4
 Я-78
Я-78 ХРЕСТОМАТИЯ: Практикум по английскому языку. Составитель С.А. Ярунина. Практикум по английскому языку. – Нижний Новгород: Нижегородский госуниверситет, 2014. – 61 с.
 Рецензент: старший преподаватель Н.Б Шестакова
Предлагаемый практикум по английскому языку предназначен для студентов 2 курса факультета ВМК ННГУ.

Целью настоящего практикума является расширение лексического запаса по специализации студентов и формирование умений и навыков монологической и диалогической речи. Разработка может быть использована как для аудиторной, так и для самостоятельной работы студентов.
 Методическая разработка предназначена для студентов, обучающихся по специальности 010300 «Информационные технологии».
 Практикум содержит учебные и аутентичные тексты по указанной специализации студентов.
Ответственный за выпуск:

председатель методической комиссии филологического факультета ННГУ,

к.ф.н., доцент И.В. Кузьмин
УДК 802. 0 (075)
ББК Ш 143.2 / я 73-4
© Нижегородский государственный

университет им. Н.И. Лобачевского, 2014
Contents

2Programs

4Windows Vista

6Personal Digital Assistants (PDA)

8Universal Serial Bus

10Asynchronous Computer and Web-based Training

12Technologies for Delivering Synchronous Courses

14Extreme Programming

16Database Management Systems

18DBMS building blocks

20Revision Control

22Software Development Activities

24Definition of Testing

26Testing Methods

28Testing Levels

31PHP Language

33Wireless Sensor Network

35WiMAX’s Network Applications

37Shader

39SIP Architecture

41Lempel-Ziv-Welch (LZW)

43Data Compression with the Burrows-Wheeler Transform

45Principles and Design of Bit Torrent protocol

47Compiler Classification

49Front End

51Macintosh

54Mainframe Computer

56Zonnon Compiler Architecture

58Computer Architecture

61Reference materials

Programs
Before you read

I. Discuss with your partner:

1. Do you know how many instructions per second a typical modern computer can execute?

2. Do you know what is called “Harvard architecture”?

II. Read the text and decide whether the statements are true or false:

3. Bugs affect the usefulness of the program.

4. Bugs are usually the fault of the computer.

5. The computer’s memory can store the instruction code.

6. Most complicated programs are written in the most abstract high-level programming languages.

7. The simplest computers are able to perform only one instruction.
In practical terms, a computer program may run from just a few instructions to many millions of instructions, as in a program for a word processor or a web browser. A typical modern computer can execute billions of instructions per second (gigahertz or GHz) and rarely make a mistake over many years of operation. Large computer programs comprising several million instructions may take teams of programmers years to write, thus the probability of the entire program having been written without error is highly unlikely.

Errors in computer programs are called "bugs". Bugs may be benign and not affect the usefulness of the program or have only subtle effects. But in some cases they may cause the program to "hang" - become unresponsive to input such as mouse clicks or keystrokes or to completely fail or "crash". Otherwise benign bugs may sometimes may be harnessed for malicious intent by an unscrupulous user writing an "exploit" - code designed to take advantage of a bug and disrupt a program's proper execution. Bugs are usually not the fault of the computer. Since computers merely execute the instructions they are given, bugs are nearly always the result of programmer error or an oversight made in the program's design.

In most computers individual instructions are stored as machine code with each instruction being given a unique number (its operation code or opcode for short). The command to add two numbers together would have one opcode, the command to multiply them would have a different opcode and so on. The simplest computers are able to perform any of a handful of different instructions; the more complex computers have several hundred to choose from—each with a unique numerical code. Since the computer's memory is able to store numbers, it can also store the instruction codes. This leads to the important fact that entire programs (which are just lists of instructions) can be represented as lists of numbers and can themselves be manipulated inside the computer just as if they were numeric data. The fundamental concept of storing programs in the computer's memory alongside the data they operate on is the crux of the von Neumann or stored program, architecture. In some cases a computer might store some or allof its program in memory that is kept separate from the data it operates on. This is called the Harvard architecture after the Harvard Mark I computer. Modern von Neumann computers display some traits of the Harvard architecture in their designs, such as in CPU caches.

Machine languages and the assembly languages that represent them (collectively termed low-level programming languages) tend to be unique to a particular type of computer. For instance, an ARM architecture computer (such as may be found in a PDA or a hand-held videogame) cannot understand the machine language of an Intel Pentium or the AMD Athlon 64 computer that might be in a PC.

Though considerably easier than in machine language, writing long programs in assembly language are often difficult and error prone. Therefore most complicated programs are written in more abstract high-level programming languages that are able to express the needs of the computer programmer more conveniently (and thereby help reduce programmer error). High level languages are usually "compiled" into machine language (or sometimes into assembly language and then into machine language) using another computer program called a compiler. Since high level languages are more abstract than assembly language, it is possible to use different compilers to translate the same high level language program into the machine language of many different types of computer. This is part of the means by which software like video games may be made available for different computer architectures such as personal computers and various video game consoles.

The task of developing large software systems is an immense intellectual effort. Producing software with an acceptably high reliability on a predictable schedule and budget has proved historically to be a great challenge; the academic and professional discipline of software engineering concentrates specifically on this problem.
III. Read the statements below. Which do you agree more to? Why?

8. “Learning a programming language is like learning any natural language. The only difference is that you are communicating with a machine instead of another person”.
9. “I get annoyed when I hear people comparing programming languages with natural languages. They have almost nothing in common”.

Windows Vista
Before you read

IV. Discuss these questions with your partner:

10. Do you have any idea about Window Vista?

11. What is the aim of Window Vista?

V. Read the text and decide whether these statements are true or false:

12. Windows Vista’s development was completed in 2007.

13. The release of WV came more than five years after its predecessor Windows XP.

14. WV improved many new multimedia creation tools.

15. WV includes version 4.0 of the NET Framework.

16. Windows Vista has been the target of much criticism.

17. Windows XP is still being chosen over WV for the majority of computer sales.

Windows Vista is a line of operating systems developed by Microsoft for use on personal computers, including home and business desktops, laptops, Tablet PCs, and media centre PCs. Prior to its announcement on July 22, 2005, Windows Vista was known by its codename Longhorn. Development was completed on November 8, 2006; over the following three months it was released in stages to computer hardware and software manufacturers, business customers, and retail channels. On January 30, 2007, it was released worldwide and was made available for purchase and download from Microsoft's website. The release of Windows Vista came more than five years after the introduction of its predecessor Windows XP, the longest time span between successive releases of Microsoft Windows.

Windows Vista contains many changes and new features, including an updated graphical user interface and visual style dubbed Windows Aero, improved searching features, new multimedia creation tools such as Windows DVD Maker, and redesigned networking, audio, print and display sub-systems. Vista also aims to increase the level of communication between machines on a home network, using peer-to-peer technology to simplify sharing files and digital media between computers and devices. Windows Vista includes version 3.0 of the .NET Framework, which aims to make it significantly easier for software developers to write applications than with the traditional Windows API.

Microsoft's primary stated objective with Windows Vista, however has been to improve the state of security in the Windows operating system. One common criticism of Windows XP and its predecessors has been their commonly exploited security vulnerabilities and overall susceptibility to malware, viruses and buffer overflows. In light of this Microsoft chairman Bill Gates announced in early 2002 a company-wide "Trustworthy Computing initiative" which aims to incorporate security work into every aspect of software development at the company. Microsoft stated that it prioritized improving the security of Windows XP and Windows Server 2003 above finishing Windows Vista, thus delaying its completion.

While these new features and security improvements have garnered positive reviews, Vista has also been the target of much criticism and negative press. Criticism of Windows Vista has targeted high system requirements, its more restrictive licensing terms, the inclusion of a number of new digital rights management technologies aimed at restricting the copying of protected digital media, lack of compatibility with certain pre-Vista hardware and software and the number of authorization prompts for User Account Control. As a result of these and other issues, Windows Vista has seen adoption and satisfaction rates lower than Windows XP.

According to a marketing manager working for HP Australia Windows XP is still being chosen over Windows Vista for the majority of business computer sales. As all customers of OEM versions of Vista Business and Ultimate are eligible for a free downgrade to Windows XP Professional, these Windows XP licenses are sold as Vista Business licenses, thus increasing Vista's sales figures. Some computer manufacturers have chosen to ship Windows XP restore disks along with new computers with Vista Business and Ultimate editions pre-installed, as well as new computers with XP instead of Vista.

VI. Read the text again and give a heading to each paragraph.
Personal Digital Assistants (PDA)

Before you read

I. Discuss the following with your partner:
18. Do you know when the term PDA was used first?

19. Can you name any typical features of the PDAs?

II. Comprehension questions:

20. What enables PDAs to be used as mobile phones?

21. When and where was the first PDA released?

22. What does a typical PDA have for entering and storing data?

23. What are PDAs used for?

24. What for are PDAs used in cars, medicine, education and sports?

A personal digital assistant (PDA) is a handheld computer also known as small or palmtop computers. Newer PDAs also have both colour screens and audio capabilities, enabling them to be used as mobile phones, (smart phones), web browsers, or portable media players. Many PDAs can access the Internet, intranets or extranets via Wi-Fi or Wireless Wide-Area Networks (WWANs). Many PDAs employ touch screen technology.

The first PDA is considered to be the CASIO PF-3000 released in May 1983. GO Corp. was also pioneering in the field. The term was first used on January 7, 1992 by Apple Computer CEO John Sculley at the Consumer Electronics Show in Las Vegas, Nevada, referring to the Apple Newton. PDAs are sometimes referred to as "Palms", "Palm Pilot", or "Palm Tops".

Typical features

Currently a typical PDA has a touch screen for entering data, a memory card slot for data storage and at least one of the following for connectivity: IrDA, Bluetooth and/or WiFi. However many PDAs (typically those used primarily as telephones) may not have a touch screen, using soft keys, a directional pad and either the numeric keypad or a thumb keyboard for input.

Software typically required to be a PDA includes an appointment calendar, a to-do list, an address book for contacts and some sort of note program. Connected PDAs also typically include E-mail and Web support. PDAs are used to store information that can be accessed at any time and anywhere.

Automobile navigation

Many PDAs are used in car kits and are fitted with differential Global Positioning System (GPS) receivers to provide real time automobile navigation. PDAs are increasingly being fitted as standard on new cars.

Medical and scientific uses

In medicine PDAs have been shown to aid diagnosis and drug selection and some studies have concluded that their use by patients to record symptoms improves the effectiveness of communication with hospitals during follow-up.

Recently the development of Sensor Web technology has led to discussion of using wearable bodily sensors to monitor ongoing conditions like diabetes and epilepsy and alerting medical staff or the patient themselves to the treatment required via communication between the web and PDAs.

Educational uses

As mobile technology has become very common, it is no surprise that personal computing has become a vital learning tool by this time. Educational institutes have commenced a trend of integrating PDAs into their teaching practices (mobile learning). With the capabilities of PDAs, teachers are now able to provide a collaborative learning experience for their students. They are also preparing their students for possible practical uses of mobile computing upon their graduation.

Sporting uses

PDAs are used by glider pilots for pre-flight planning and to assist navigation in cross-country competitions. They are linked to a GPS to produce moving-map displays showing the tracks to turn-points, airspace hazards and other tactical information.

PDA's may also be used by music enthusiasts. They can be used to play a variety of file formats (unlike most MP3 Players) during physical exercise (e.g. running), unlike certain larger devices such as laptops.

PDAs can be used by road rally enthusiasts. PDA software can be used for calculating distance, speed, time and GPS navigation as well as unassisted navigation.

III. Read the text again and make notes below on the following:

25. Typical features of PDAs.

26. Uses of PDAs in medicine, education, sports.

Universal Serial Bus
Before you read

IV. Discuss the following with your partner:

27. Do you know what USB was designed for?

28. What is Universal Serial Bus (USB) in information technology?

V. Comprehension questions:

29. What are the convenient features of USB?

30. What can USB connect?

31. How many USB devices are there in the world?

32. What is USB intended for?

33. Who is the design of USB standardized by?

In information technology Universal Serial Bus (USB) is a serial bus standard to interface devices to a host computer. USB was designed to allow many peripherals to be connected using a single standardized interface socket and to improve the plug-and-play capabilities by allowing hot swapping, that is, by allowing devices to be connected and disconnected without rebooting the computer or turning off the device. Other convenient features include providing power to low-consumption devices without the need for an external power supply and allowing many devices to be used without requiring manufacturer specific, individual device drivers to be installed.

USB is intended to replace many legacy varieties of serial and parallel ports. USB can connect computer peripherals such as mouse, keyboards, PDAs, gamepads and joysticks, scanners, digital cameras, printers, personal media players and flash drives. For many of those devices USB has become the standard connection method. USB was originally designed for personal computers, but it has become commonplace on other devices such as PDAs and video game consoles, and as a bridging power cord between a device and an AC adapter plugged into a wall plug for charging purposes. As of 2008, there are about 2 billion USB devices in the world.

The USB 1.0 specification model was introduced in November 1995. USB was created by the Core group of companies that consisted of Intel, Compaq, Microsoft, Digital, IBM, and Northern Telecom. Intel produced the UHCI host controller and open software stack; Microsoft produced a USB software stack for Windows and co-authored the OHCI host controller specification with National Semiconductor and Compaq; Philips produced early USB-Audio; and TI produced the most widely used hub chips. Originally USB was intended to replace the multitude of connectors at the back of PCs, as well as to simplify software configuration of communication devices.

The original Apple "Bondi blue" iMac G3, introduced May 6, 1998, was the first computer to offer USB ports without offering "legacy" ports. USB 1.1 came out in September 1998 to help rectify the adoption problems that occurred with earlier iterations of USB, mostly those relating to hubs.

As of 2008, the USB specification is at version 2.0 (with revisions). Hewlett-Packard, Intel, Lucent (now LSI Corporation since its merger with Lucent spinoff Agere Systems), Microsoft, NEC, and Philips jointly led the initiative to develop a higher data transfer rate than the 1.1 specification. The USB 2.0 specification was released in April 2000 and was standardized by the USB-IF at the end of 2001. Equipment conforming to any version of the standard will also work with devices designed to any previous specification (known as backward compatibility).

USB 3.0

On September 18, 2007 Pat Gelsinger demonstrated USB 3.0 at the Intel Developer Forum. USB 3.0 is targeted at ten times the current bitrate, reaching roughly 4.8 Gbit/s (for a highly theoretical maximum 600MB/s) by utilizing two additional high-speed differential pairs for "Superspeed" mode at a clock frequency of 2.5GHz and with the possibility for optical interconnect. The two new differential pairs make the cable about as thick as an ethernet cable and provide full-duplex transfers.
VI. Write an essay comparing the USB 1.0 specification model with USB 3.0. Decide which best one in your opinion is.

Asynchronous Computer and Web-based Training

Before you read

VII. Discuss the following with your partner:

34. Do you know the advantages of WBT over CBT?

35. Do you know the disadvantages of WBT over CBT?

VIII. Comprehension questions:

36. How is computer-based training (CBT) and web-based training (WBT) distributed?

37. Why are they often called page-turners?

38. How many CBTs and WBTs are structured?

39. What are the technologies for delivering asynchronous e - learning?

40. Why can discussion forums be extremely effective?

Computer-based training (CBT) and web-based training (WBT) refer to a course that is distributed on CD-ROM or over the Web for students to take as a self-paced asynchronous course. They are often derogatively called page-turners because a standard layout is used where the mouse can be positioned and the learner can click through screens, often faster than he or she is reading. The advantages of WBT over CBT are that online materials can be updated and hence distributed more easily. The potential exists, since a student is online, for interaction with an instructor and other students. The disadvantages of WBT over CBT are that a student needs Internet access, either to be connected while taking the class or to be uploading and downloading materials. This can be costly, especially for large multimedia files, and prohibitive if a student is travelling or access is expensive.

Many CBTs and WBTs are structured in a linear fashion, where a learner is expected to follow one path through the materials. Some offer more flexibility, so a learner can navigate based on interests or needs. In the most sophisticated, each student follows a path tailored to his or her needs based on testing and progress. Some track what a student does or looks at, requiring, say, 80% of all screens to be looked at for the student to be considered done. CBTs and WBTs have varying degrees of interaction or interactivity, which most often refers to the extent to which a learner is passive or is actively using, say, a simulation or needs to be mousing over text to receive information. While development of CBTs and WBTs can be expensive, the costs can be recouped through broad distribution.

There are many technologies that can be effectively employed to deliver asynchronous e-learning. These include many collaborative tools that can be brought to distance education including e-mail and discussion forums. Although many learning management systems include the ability to upload and share documents, e-mail is often used for informal, behind the scenes exchanges of resources (e.g., draft versions of documents, Web links) in support of group work. E-mail, in its simplest use here, can provide a speedier version of the traditional correspondence course. More typically it is used for teacher-student communication and student-student exchanges.

Discussion forums are included in much distance education and provide a mechanism for discussion on specific course topics as well as informal exchanges carried out asynchronously over time (e.g. days, weeks, months). More robust discussion forums might support the ability to attach documents or uniform resource locators (URLs) or send e-mail notifications when new posts are added. Threaded discussion forums are typically organized so that the exchange of messages and responses are grouped together and are easy to find. Common ways to group or sort postings are by date, title, author, group or by specific topics defined by the instructor or other participants. Often threaded discussions are expandable and collapsible to allow participants to manage the number of posts shown on their screen at once and to facilitate browsing groups of posts. Discussion forums can be extremely effective since there can be a great deal of sharing of perspectives and insights among students; the challenge is to encourage the right amount and type of participation so that learning is enhanced through discussions.

IX. Read the text again and make notes below on the following:
Advantages and disadvantages of WBT over CBT
Technologies for Delivering Synchronous Courses

Before you read

X. Discuss the following with your partner:

41. Do you know anything about collaborative technologies used to support synchronous distance education?

42. What is the most frequently used form of synchronous interaction?

XI. Comprehension questions:

43. When can audio work best?

44. What do whiteboard tools typically consist of?

45. What does Instant Messaging (IM) involve?

46. What for have virtual worlds been used successfully?

47. Why is streaming video becoming more common nowadays?

There are many collaborative technologies that can be effectively used to fully or partially support synchronous distance education. Most of these have the advantage that they need not only be used for real-time interaction, but can also be archived for subsequent review. These include audio conferencing, electronic whiteboards and screen sharing, instant messaging, text chat, virtual worlds, video communication, Web casting and Web conferencing.

Audio conferencing, using the telephone or voice over Internet protocol (VoIP), allows a group to interact in real time through sharing voice (audio) and other artefacts such as slides or text. In its simplest form this can be accomplished using phone lines and previously downloaded meeting materials. Audio is a fairly simple and often inexpensive way of supporting lecture and discussion in a course. The biggest issue with effective audio conferencing is quality, since students are generally intolerant of poor quality audio. For telephony, speakerphones with mute capabilities aid participation, and for VoIP, headsets with microphones similarly make it easier for a student to participate. Sessions conducted with audio should be 1 to 2 hours in length, since it is harder for a student to sit through even a great lecture and discussion online than in the classroom.

Audio works best when supplemented by other technologies to support information sharing and exchange. Whiteboard tools typically consist of an electronic version of a dry-erase board which can be used by a group of people in a virtual classroom, either used alone or overlaid on a shared application. They are used for freehand writing and drawing in the former case and pointing to or highlighting information in the latter case. These range from very simplistic shared graphical editors to fairly sophisticated shared applications incorporating audio, slideshows or applications through remote desktops. Some whiteboard tools may support graphing, polling, group Web browsing and instructor moderation. Screen and application sharing allow a teacher to share an open application on his or her desktop with a class. Many Web casting tools bundle application sharing, whiteboard, chat, a participant list, polling and feedback indicators such as hand-raising with audio and video capabilities to provide a virtual classroom.

Probably the most frequently used form of synchronous interaction occurs via Instant Messaging (IM) and text chat. These tools provide the ability for synchronous conversations between people over the Internet by exchanging text messages back and forth at virtually the same time. IM typically involves pairs of individuals, while chat tools involve larger groups (sometimes whole classes). IM and chat provide a means for a teacher to hold online office hours. IM allows students to see when a teacher is available for questions and is quicker and easier than the phone or e-mail. It allows students to find easily when another is available, say, for collaboration on a project. It has the benefit that students can see who else is online, even if they do not communicate, which is helpful since online students may feel isolated. One of the surprising properties of computing is that it is a social activity. IM and chat tools can vary widely—some are simple, allowing the exchange of text messages with little else; others provide an ability for private messaging, ignoring specific participants, sharing files or providing some structure for interaction (i.e. for students to ask questions and instructors to provide answers). Chats used within learning environments should be persistent (i.e. chat histories should remain available for review by students and instructors throughout the life of the course). Instructors should be able view chat logs (time-stamped) for student assessment.

Virtual worlds take IM and chat into a visual realm, where avatars or representations of people move in a two or three dimensional world and talk to each other. Virtual worlds have been used successfully for teaching languages and architectural design, where, in the latter case, students can construct buildings that others can tour. Virtual worlds are also useful for the informal social interaction that happens more readily on campus.

Videoconferencing extends the capability of audio conferencing by including video. Such services enable instructors to stream either video from within the system or else enable videoconferencing between instructors and students, between students or between multiple classrooms. While this seems appealing, fast connections are necessary to avoid debilitating delays or poor quality (i.e. choppy) video. For multipoint videoconferencing all participants must have access to video cameras—a requirement that may be unrealistic for courses where students are logging in from home. Streaming video is becoming more common and is often replayed rather than live.

XII. Read the text again and give a heading to each paragraph.

Extreme Programming
Before you read

XIII. Discuss with your partner:

48. Do you know the aim of XP?

49. Do you know the difference between XP and SSADM?

XIV. Read the statements and decide whether they are true or false:

50. The main aim of XP is to increase the cost of change.

51. XP describes the five basic activities.

52. Coding is used to figure out the most suitable solution.

53. Testing is of no need for the customer.

54. Programmers know everything about the business side of the system under development.
Goals of XP
"Extreme Programming Explained" describes Extreme Programming as being:

•
An attempt to reconcile humanity and productivity

•
A mechanism for social change

•
A path to improvement

•
A style of development

•
A software development discipline

The main aim of XP is to reduce the cost of change. In traditional system development methods (such as SSADM) the requirements for the system are determined at the beginning of the development project and often fixed from that point on. This means that the cost of changing the requirements at a later stage (a common feature of software engineering projects) will be high. XP sets out to reduce the cost of change by introducing basic values, principles and practices. By applying XP a system development project should be more flexible with respect to changes.

XP Activities

XP describes four basic activities that are performed within the software development process.

Coding

The advocates of XP argue that the only truly important product of the system development process is code (a concept to which they give a somewhat broader definition than might be given by others). Without code you have nothing. Coding can be drawing diagrams that will generate code, scripting a web-based system or coding a program that needs to be compiled.

Coding can also be used to figure out the most suitable solution. For instance, XP would advocate that faced with several alternatives for a programming problem, one should simply code all solutions and determine with automated tests which solution is most suitable. Coding can also help to communicate thoughts about programming problems. A programmer dealing with a complex programming problem and finding it hard to explain the solution to fellow programmers might code it and use the code to demonstrate what he or she means. Code, say the exponents of this position, is always clear and concise and cannot be interpreted in more than one way. Other programmers can give feedback on this code by also coding their thoughts.

Testing

One cannot be certain of anything unless one has tested it. Testing is not a perceived, primary need for the customer. A lot of software is shipped without proper testing and still works. In software development XP says this means that one cannot be certain that a function works unless one tests it. This raises the question of defining what one can be uncertain about.

•
You can be uncertain whether what you coded is what you meant. To test this uncertainty, XP uses Unit Tests. These are automated tests that test the code. The programmer will try to write as many tests he or she can think of that might break the code he or she is writing. If all tests run successfully then the coding is complete.

•
You can be uncertain whether what you meant is what you should have meant. To test this uncertainty, XP uses acceptance tests based on the requirements given by the customer in the exploration phase of release planning.

Listening

Programmers do not necessarily know anything about the business side of the system under development. The function of the system is determined by the business side. For the programmers to find what the functionality of the system should be, they have to listen to business. Programmers have to listen "in the large": they have to listen to what the customer needs. Also they have to try to understand the business problem and to give the customer feedback about his or her problem, to improve the customer's own understanding of his or her problem.

Designing

From the point of view of simplicity one could say that system development doesn't need more than coding, testing and listening. If those activities are performed well, the result should always be a system that works. In practice this will not work. One can come a long way without designing but at a given time one will get stuck. The system becomes too complex and the dependencies within the system cease to be clear. One can avoid this by creating a design structure that organizes the logic in the system. Good design will avoid lots of dependencies within a system, this means that changing one part of the system will not affect other parts of the system.

XV. Write an essay about the XP activities.
Database Management Systems
Before you read

XVI.
Discuss the following with your partner:

55. What do you know about database management system?

56. What are the main functions of DBMS?

XVII. Comprehension questions:

57. What is a DBMS?

58. How are DBMS categorized?

59. What for do organizations use one kind of DBMS?

60. Where are sometimes DBMS built?

61. How is overall systems design decisions performed?

A database management system (DBMS) is computer software that manages databases. DBMS may use any of a variety of database models, such as the network model or relational model. In large systems a DBMS allows users and other software to store and retrieve data in a structured way.

A DBMS is a set of software programs that controls the organization, storage, management and retrieval of data in a database. DBMS are categorized according to their data structures or types. It is a set of prewritten programs that are used to store, update and retrieve a Database. The DBMS accepts requests for data from the application program and instructs the operating system to transfer the appropriate data. When a DBMS is used, information systems can be changed much more easily as the organization's information requirements change. New categories of data can be added to the database without disruption to the existing system.

Organizations may use one kind of DBMS for daily transaction processing and then move the detail onto another computer that uses another DBMS better suited for random inquiries and analysis. Overall systems design decisions are performed by data administrators and systems analysts. Detailed database design is performed by database administrators.

Database servers are computers that hold the actual databases and run only the DBMS and related software. Database servers are usually multiprocessor computers with generous memory and RAID disk arrays used for stable storage. Connected to one or more servers via a high-speed channel, hardware database accelerators are also used in large volume transaction processing environments. DBMS are found at the heart of most database applications. Sometimes DBMS are built around a private multitasking kernel with built-in networking support although nowadays these functions are left to the operating system.

Databases have been in use since the earliest days of electronic computing. Unlike modern systems which can be applied to widely different databases and needs, the vast majority of older systems were tightly linked to the custom databases in order to gain speed at the expense of flexibility.
XVIII. Now write a short report describing the information in the text.
DBMS Building Blocks
Before you read

XIX. Discuss the following with your partner:

62. Do you know how many parts a DBMS includes?

63. What guarantees ACID properties?

XX. Comprehension questions:

64. What are the four most common types of organizations?

65. What does the optimal structure depend on?

66. What do data structures deal with?

67. What does a database query language and report writer allow users?

68. What does a database transaction mechanism ideally guarantee?

A DBMS includes four main parts: modelling language, data structure and database query language and transaction mechanisms.
Modelling language

A data modelling language defines the schema of each database hosted in the DBMS, according to the DBMS database model. The four most common types of organizations are the:

•
hierarchical model,

•
network model,

•
relational model,

•
object model.

Inverted lists and other methods are also used. A given database management system may provide one or more of the four models. The optimal structure depends on the natural organization of the application's data and on the application's requirements (which include transaction rate (speed), reliability, maintainability, scalability and cost).

The dominant model in use today is the ad hoc one embedded in SQL, despite the objections of purists who believe this model is a corruption of the relational model, since it violates several of its fundamental principles for the sake of practicality and performance. Many DBMSs also support the Open Database Connectivity API that supports a standard way for programmers to access the DBMS.

Data structure

Data structures (fields, records, files and objects) deal with very large amounts of data stored on a permanent data storage device (which implies relatively slow access compared to volatile main memory).

Database query language

A database query language and report writer allows users to interrogate the database interactively, analyze its data and update it according to the users’ privileges on data. It also controls the security of the database. Data security prevents unauthorized users from viewing or updating the database. Using passwords users are allowed access to the entire database or subsets of it called subschemas. For example, an employee database can contain all the data about an individual employee, but one group of users may be authorized to view only payroll data, while others are allowed access to only work history and medical data.

If the DBMS provides a way to enter interactively and update the database, as well as interrogate it, this capability allows for managing personal databases. However it may not leave an audit trail of actions or provide the kinds of controls necessary in a multi-user organization. These controls are only available when a set of application programs are customized for each data entry and updating function.

Transaction mechanism

A database transaction mechanism ideally guarantees ACID properties in order to ensure data integrity despite concurrent user accesses (concurrency control) and faults (fault tolerance). It also maintains the integrity of the data in the database. The DBMS can maintain the integrity of the database by not allowing more than one user to update the same record at the same time. The DBMS can help to prevent duplicate records via unique index constraints; for example, no two customers with the same customer numbers (key fields) can be entered into the database.

XXI. Write an essay about DBMS.

These phrases will help you: firstly, secondly, furthermore, however, on the other hand
Revision Control

Before you read

XXII. Discuss the following with your partner:
69. Do you know what in this control was implicit?

70. Do you happen to know what for software developers sometimes use revision control?

XXIII. Comprehension questions:

71. Where is revision control widespread?

72. What is engineering revision control based on?

73. What do developers simply retain at the simplest level?

74. What is common for a single document in software development and other environments?

75. In what situations is sophisticated revision control helpful or even necessary?

Engineering revision control developed from formalized processes is based on tracking revisions of early blueprints. Implicit in this control was the ability to return to any earlier state of the design, for cases in which an engineering dead-end was reached in the development of the design. Likewise in computer software engineering revision control is any practice that tracks and provides control over changes to source code. Software developers sometimes use revision control software to maintain documentation and configuration files as well as source code. Also version control is widespread in business and law. An entire industry has emerged to service the document revision control needs of business and other users, and some of the revision control technology employed in these circles is subtle, powerful and innovative. The most sophisticated techniques are beginning to be used for the electronic tracking of changes to CAD files, supplanting the "manual" electronic implementation of traditional revision control.

As software is designed, developed and deployed, it is extremely common for multiple versions of the same software to be deployed in different sites and for the software's developers to be working simultaneously on updates. Bugs and other issues with software are often only present in certain versions (because of the fixing of some problems and the introduction of others as the program develops). Therefore for the purposes of locating and fixing bugs, it is vitally important to be able to retrieve and run different versions of the software to determine in which version(s) the problem occurs. It may also be necessary to develop two versions of the software concurrently (for instance, where one version has bugs fixed, but no new features (branch), while the other version is where new features are worked on (trunk)).

At the simplest level developers could simply retain multiple copies of the different versions of the program and number them appropriately. This simple approach has been used on many large software projects. While this method can work, it is inefficient as many near-identical copies of the program have to be maintained. This requires a lot of self-discipline on the part of developers and often leads to mistakes. Consequently systems to automate some or all of the revision control process have been developed.

Moreover in software development and other environments, including in legal and business practice, it is increasingly common for a single document or snippet of code to be edited by a team, the members of which may be geographically dispersed and/or may pursue different and even contrary interests. Sophisticated revision control that tracks and accounts for ownership of changes to documents and code may be extremely helpful or even necessary in such situations.

Another use for revision control is to track changes to configuration files, such as those typically stored in UNIX systems. This gives system administrators another way to track easily changes to configuration files and a way to roll back to earlier versions should the need arise.

XXIV. Write an e-mail to your English teacher about revision control. Explain why you're writing.
Software Development Activities
Before you read

XXV. Discuss the following with your partner:
76. Do you know what in creating a software product the most important task is?

77. Do you know what a scope document is?

XXVI. Comprehension questions:

78. What may help to reduce the risk that the requirements are incorrect?

79. What is considered to be a legal document?

80. What is an implementation?

81. What may documenting include?

82. Why is Software Training and Support important?

Planning

The important task in creating a software product is extracting the requirements or requirements analysis. Customers typically have an abstract idea of what they want as an end result, but not what software should do. Incomplete, ambiguous or even contradictory requirements are recognized by skilled and experienced software engineers at this point. Frequently demonstrating live code may help to reduce the risk that the requirements are incorrect.

Once the general requirements are gleaned from the client, an analysis of the scope of the development should be determined and clearly stated. This is often called a scope document. Certain functionality may be out of scope of the project as a function of cost or as a result of unclear requirements at the start of development. If the development is done externally, this document can be considered a legal document so that if there are ever disputes, any ambiguity of what was promised to the client can be clarified.

Implementation, testing and documenting

Implementation is the part of the process where software engineers actually program the code for the project. Software testing is an integral and important part of the software development process. This part of the process ensures that bugs are recognized as early as possible. Documenting the internal design of software for the purpose of future maintenance and enhancement is done throughout development. This may also include the authoring of an API, be it external or internal.

Deployment and maintenance

Deployment starts after the code is appropriately tested and approved for release and sold or otherwise distributed into a production environment. Software Training and Support is important because a large percentage of software projects fail because the developers fail to realize that it doesn't matter how much time and planning a development team puts into creating software if nobody in an organization ends up using it. People are often resistant to change and avoid venturing into an unfamiliar area, so as a part of the deployment phase, it is very important to have training classes for new clients of your software. Users will have lots of questions and software problems which lead to the next phase of software.

Maintenance and enhancing software to cope with newly discovered problems or new requirements can take far more time than the initial development of the software. It may be necessary to add code that does not fit the original design to correct an unforeseen problem or it may be that a customer is requesting more functionality and code can be added to accommodate their requests. It is during this phase that customer calls come in and you see whether your testing was extensive enough to uncover the problems before customers do. If the labour cost of the maintenance phase exceeds 25% of the prior-phases' labour cost, then it is likely that the overall quality of at least one prior phase is poor. In that case management should consider the option of rebuilding the system (or portions) before maintenance cost is out of control.

XXVII. Answer the essay question: Why is it very important to have training classes for new clients of your software?
Definition of Testing
Before you read

XXVIII. Discuss the following with your partner:

83. Do you know what test techniques include?

84. Do you know when Software Testing can be implemented?

XXIX. Comprehension questions:

1.
How can Software testing be stated?

2.
What is Software testing?

3.
What audience has every software product?

4.
What do newer development models often employ?

5.
When does most of the test effort occur?

Software Testing provides an objective, independent view of the software to allow the business to appreciate and understand the risks at implementation of the software. Test techniques include, but are not limited to the process of executing a program or application with the intent of finding software bugs.

Software Testing can also be stated as the process of validating and verifying that a software program/application/product:

meets the business and technical requirements that guided its design and development;

works as expected;

can be implemented with the same characteristics.

Software Testing, depending on the testing method employed, can be implemented at any time in the development process. However most of the test effort occurs after the requirements have been defined and the coding process has been completed. As such the methodology of the test is governed by the Software Development methodology adopted.

Different software development models will focus the test effort at different points in the development process. Newer development models, such as Agile, often employ test driven development and place an increased portion of the testing in the hands of the developer, before it reaches a formal team of testers. In a more traditional model most of the test execution occurs after the requirements have been defined and the coding process has been completed.

Software testing is an empirical investigation conducted to provide stakeholders with information about the quality of the product or service under test. Testing can never completely identify all the defects within software. Instead it furnishes a criticism or comparison that compares the state and behaviour of the product against oracles—principles or mechanisms by which someone might recognize a problem. These oracles may include (but are not limited to) specifications, contracts, comparable products, past versions of the same product, inferences about intended or expected purpose, user or customer expectations, relevant standards, applicable laws or other criteria.

Every software product has a target audience. For example, the audience for video game software is completely different from banking software. Therefore when an organization develops or otherwise invests in a software product, it can assess whether the software product will be acceptable to its end users, its target audience, its purchasers and other stakeholders.
XXX. Summarize everything you know about Software Testing.

Testing Methods
Before you read

XXXI. Discuss the following with your partner:
85. Do you happen to know how software testing methods are traditionally divided?

86. Do you know advantages and disadvantages of Black box testing and White box testing?

XXXII. Comprehension questions:

87. As what does Black box testing treat the software?

88. What do Black box testing methods include?

89. What does specification-based testing aim to?

90. When does White box testing take place?
91. What does Grey Box Testing involve?

Software testing methods are traditionally divided into black box testing and white box testing. These two approaches are used to describe the point of view that a test engineer takes when designing test cases.

Black box testing

Black box testing treats the software as a "black box"—without any knowledge of internal implementation. Black box testing methods include: equivalence partitioning, boundary value analysis, all-pairs testing, fuzz testing, model-based testing, traceability matrix, exploratory testing and specification-based testing.

Specification-based testing

Specification-based testing aims to test the functionality of software according to the applicable requirements. Thus the tester inputs data into and only sees the output from the test object. This level of testing usually requires thorough test cases to be provided to the tester, who then can simply verify that for a given input, the output value (or behaviour), either "is" or "is not" the same as the expected value specified in the test case. Specification-based testing is necessary, but it is insufficient to guard against certain risks.

Advantages and disadvantages

The black box tester has no "bonds" with the code and a tester's perception is very simple: a code must have bugs. Using the principle "Ask and you will receive," black box testers find bugs where programmers do not. But on the other hand black box testing has been said to be "like a walk in a dark labyrinth without a flashlight," because the tester doesn't know how the software being tested was actually constructed. As a result there are situations when (1) a tester writes many test cases to check something that could have been tested by only one test case, and/or (2) some parts of the back-end are not tested at all.

Therefore black box testing has the advantage of "an unaffiliated opinion" on the one hand and the disadvantage of "blind exploring" on the other.

White box testing

White box testing is when the tester has access to the internal data structures and algorithms including the code that implement these.

There are the following types of white box testing:

•
API testing (application programming interface) - Testing of the application using Public and Private APIs

•
Code coverage - creating tests to satisfy some criteria of code coverage (e.g., the test designer can create tests to cause all statements in the program to be executed at least once)

•
Fault injection methods - improving the coverage of a test by introducing faults to test code paths

•
Mutation testing methods

•
Static testing - White box testing includes all static testing

Test coverage

White box testing methods can also be used to evaluate the completeness of a test suite that was created with black box testing methods. This allows the software team to examine parts of a system that are rarely tested and ensures that the most important function points have been tested.

Two common forms of code coverage are:

•
Function coverage, which reports on functions executed

•
Statement coverage, which reports on the number of lines executed to complete the test

They both return code coverage metric are measured as a percentage.

Grey Box Testing

Grey box testing involves having access to internal data structures and algorithms for purposes of designing the test cases, but testing at the user or black-box level. Manipulating input data and formatting output do not qualify as grey box, because the input and output are clearly outside of the "black-box" that we are calling the system under test. This distinction is particularly important when conducting integration testing between two modules of code written by two different developers, where only the interfaces are exposed for test. However modifying a data repository is qualified as grey box, as the user would not normally be able to change the data outside of the system under test. Grey box testing may also include reverse engineering to determine, for instance, boundary values or error messages.

XXXIII. Imagine that you've got a good idea for an Internet commerce site (an Internet site which is also a business).Tell your friend what your idea is.

Testing Levels

Before you read

XXXIV. Discuss the following with your partner:

92. Do you know how tests are frequently grouped by?

93. How many types of Testing do you know?

XXXV. Comprehension questions:

94. What do the minimal unit tests include?

95. What is Integration Testing?

96. How does it work?
97. Who usually writes Unit Testing?

98. How many tests might one function have?

Tests are frequently grouped by where they are added in the software development process or by the level of specificity of the test.

Unit Testing

Unit testing refers to tests that verify the functionality of a specific section of code, usually at the function level. In an object-oriented environment this is usually at the class level and the minimal unit tests include the constructors and destructors.

These types of tests are usually written by developers as they work on code (white-box style) to ensure that the specific function is working as expected. One function might have multiple tests to catch corner cases or other branches in the code. Unit testing alone cannot verify the functionality of a piece of software, but rather is used to assure that the building blocks the software uses work independently of each other.

Integration Testing

Integration testing is any type of software testing that seeks to verify the interfaces between components against a software design. Software components may be integrated in an iterative way or all together ("big bang"). Normally the former is considered a better practice since it allows interface issues to be localised more quickly and fixed.

Integration testing works to expose defects in the interfaces and interaction between integrated components (modules). Progressively larger groups of tested software components corresponding to elements of the architectural design are integrated and tested until the software works as a system.

System Testing

System testing tests a completely integrated system to verify that it meets its requirements.

System Integration Testing

System integration testing verifies that a system is integrated to any external or third party systems defined in the system requirements.

Regression Testing

Regression testing focuses on finding defects after a major code change has occurred. Specifically it seeks to uncover software regressions or old bugs that have come back. Such regressions occur whenever software functionality that was previously working correctly stops working as intended. Typically regressions occur as an unintended consequence of program changes, when the newly developed part of the software collides with the previously existing code. Common methods of regression testing include re-running previously run tests and checking whether previously fixed faults have re-emerged. The depth of testing depends on the phase in the release process and the risk of the added features. They can either be complete, for changes added late in the release or deemed to be risky, to very shallow, consisting of positive tests on each feature, if the changes are early in the release or deemed to be of low risk.

Acceptance testing

Acceptance testing can mean one of two things:

1.
A smoke test is used as an acceptance test prior to introducing a new build to the main testing process, i.e. before integration or regression.

2.
Acceptance testing performed by the customer often in their lab environment on their own HW is known as user acceptance testing (UAT). Acceptance testing may be performed as part of the hand-off process between any two phases of development.

Alpha testing

Alpha testing is simulated or actual operational testing by potential users/customers or an independent test team at the developers' site. Alpha testing is often employed for off-the-shelf software as a form of internal acceptance testing, before the software goes to beta testing.

Beta testing

Beta testing comes after alpha testing. Versions of the software, known as beta versions, are released to a limited audience outside of the programming team. The software is released to groups of people so that further testing can ensure the product has few faults or bugs. Sometimes beta versions are made available to the open public to increase the feedback field to a maximal number of future users.

Non- Functional Software Testing

Special methods exist to test non-functional aspects of software. In contrast to functional testing, which establishes the correct operation of the software (correct in that it matches the expected behaviour defined in the design requirements). Non-functional testing verifies that the software functions properly even when it receives invalid or unexpected inputs. Software fault injection in the form of fussing is an example of non-functional testing. Non-functional testing, especially for software is designed to establish whether the device under test can tolerate invalid or unexpected inputs, thereby establishing the robustness of input validation routines as well as error-handling routines. Various commercial non-functional testing tools are linked from the Software fault injection page; there are also numerous open-source and free software tools available that perform non-functional testing.

Software performance testing and load testing

Performance testing is executed to determine how fast a system or sub-system performs under a particular workload. It can also serve to validate and verify other quality attributes of the system, such as scalability, reliability and resource usage. Load testing is primarily concerned with testing that can continue to operate under a specific load, whether that can be large quantities of data or a large number of users. This is generally referred to as software scalability. The related load testing activity of when performed as a non-functional activity is often referred to as Endurance Testing.

Volume testing is a way to test functionality. Stress testing is a way to test reliability. Load testing is a way to test performance. There is little agreement on what the specific goals of load testing are. The terms load testing, performance testing, reliability testing and volume testing are often used interchangeably.

Stability testing

Stability testing checks to see if the software can continuously function well in or above an acceptable period. This activity of Non Functional Software Testing is oftentimes referred to as load (or endurance) testing.

Usability testing

Usability testing is needed to check if the user interface is easy to use and understand.

Security testing

Security testing is essential for software that processes confidential data to prevent system intrusion by hackers.

Internationalization and localization

Internationalization and localization is needed to test these aspects of software, for which a pseudo localization method can be used. It will verify that the application still works, even after it has been translated into a new language or adapted for a new culture (such as different currencies or time zones).

Destructive testing

Destructive testing attempts to cause the software or a sub-system to fail in order to test its robustness.

XXXVI. Write the following composition: Why are Testing Levels so important? First read through the text again and make notes to organize your composition.
PHP language

Before you read

XXXVII. Discuss the following with your partner:
99. Do you know anything about the history of PHP language?

100. Do you know who formed the base of PHP 3?

XXXVIII. Comprehension questions:

101. In what language was PHP originally written?

102. Who rewrote the parser?

103. What is PHP suited for?

104. Where is PHP deployed?

105. What does PHP mainly focus on?

PHP originally stood for personal home page. It began in 1994 as a set of Common Gateway Interface (CGI) binaries written in the C programming language by the Danish/Greenlandic programmer Rasmus Lerdorf. Lerdorf initially created these Personal Home Page Tools to replace a small set of Perl scripts he had been using to maintain his personal homepage. The tools were used to perform tasks such as displaying his résumé and recording how much traffic his page was receiving. He combined these binaries with his Form Interpreter to create PHP/FI, which had more functionality. PHP/FI included a larger implementation for the C programming language and could communicate with databases enabling the building of simple dynamic web applications. Lerdorf released PHP publicly on June 8, 1995 to accelerate bug location and improve the code. This release was named PHP version 2 and already had the basic functionality that PHP has today. This included Perl-like variables, form handling and the ability to embed HTML. The syntax was similar to Perl but was more limited, simpler and less consistent.

Zeev Suraski and Andi Gutmans, two Israeli developers rewrote the parser in 1997 and formed the base of PHP 3, changing the language's name to the recursive initialism PHP: Hypertext Preprocessor.

PHP is a general-purpose scripting language that is especially suited for web development. PHP generally runs on a web server. Any PHP code in a requested file is executed by the PHP runtime, usually to create dynamic web page content. It can also be used for command-line scripting and client-side GUI applications. PHP can be deployed on most web servers, many operating systems and platforms and can be used with many relational database management systems. It is available free of charge and the PHP Group provides the complete source code for users to build, customize and extend for their own use.

PHP primarily acts as a filter, taking input from a file or stream containing text and/or PHP instructions and outputs another stream of data; most commonly the output will be HTML. Since PHP 4, the PHP parser compiles input to produce byte code for processing by the Zend Engine, giving improved performance over its interpreter predecessor.

Originally designed to create dynamic web pages, PHP now focuses mainly on server-side scripting and it is similar to other server-side scripting languages that provide dynamic content from a web server to a client, such as Microsoft's Active Server Pages, Sun Microsystems' JavaServer Pages and mod perl. PHP has also attracted the development of many frameworks that provide building blocks and a design structure to promote rapid application development (RAD).

The LAMP and WAMP architectures have become popular in the web industry as a way of deploying web applications. PHP is commonly used as the P in this bundle alongside Linux, Apache and MySQL, although the P may also refer to Python or Perl.

As of April 2007, over 20 million Internet domains were hosted on servers with PHP installed and mod_php was recorded as the most popular Apache module. Significant websites are written in PHP including the user-facing portion of Facebook, Wikipedia (MediaWiki), Yahoo!, MyYearbook, Digg, Joomla, WordPress, YouTube in its early stages, Drupal, Tagged and Moodle.

XXXIX. Write an essay describing how PHP is used nowadays.

Wireless Sensor Network

Before you read

XL. Discuss the following with your partner:

106. Do you know where wireless sensor networks are used now?

107. Do you know anything about the applications for WSNs?

XLI. Comprehension questions:

108. What does a wireless sensor network consist of?

109. What are the applications for WSNs?

110. What is area monitoring?

111. How are WSNs used in industrial monitoring?

112. What do wireless sensor networks use to detect the presence of vehicles?

A wireless sensor network (WSN) consists of spatially distributed autonomous sensors to monitor cooperatively physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. The development of wireless sensor networks was motivated by military applications such as battlefield surveillance. They are now used in many industrial and civilian application areas, including industrial process monitoring and control, machine health monitoring, environment and habitat monitoring, healthcare applications, home automation and traffic control.

In addition to one or more sensors each node in a sensor network is typically equipped with a radio transceiver or other wireless communications device, a small microcontroller and an energy source, usually a battery. A sensor node might vary in size from that of a shoebox down to the size of a grain of dust although functioning "motes" of genuine microscopic dimensions have yet to be created. The cost of sensor nodes is similarly variable, ranging from hundreds of dollars to a few pennies, depending on the size of the sensor network and the complexity required of individual sensor nodes. Size and cost constraints on sensor nodes result in corresponding constraints on resources such as energy, memory, computational speed and bandwidth.

A sensor network normally constitutes a wireless ad-hoc network, meaning that each sensor supports a multi-hop routing algorithm (several nodes may forward data packets to the base station).

The applications for WSNs are varied, typically involving some kind of monitoring, tracking or controlling. Specific applications include habitat monitoring, object tracking, nuclear reactor control, fire detection and traffic monitoring. In a typical application a WSN is scattered in a region where it is meant to collect data through its sensor nodes.

Area monitoring

Area monitoring is a common application of WSNs. In area monitoring the WSN is deployed over a region where some phenomenon is to be monitored. For example, a large quantity of sensor nodes could be deployed over a battlefield to detect enemy intrusion instead of using landmines. When the sensors detect the event being monitored (heat, pressure, sound, light, electro-magnetic field, vibration etc), the event needs to be reported to one of the base stations, which can take appropriate action (e.g., send a message on the internet or to a satellite). Depending on the exact application different objective functions will require different data-propagation strategies, depending on things such as need for real-time response, redundancy of the data (which can be tackled via data aggregation and information fusion techniques), need for security etc.

Environmental monitoring

A number of WSNs have been deployed for environmental monitoring. Many of these have been short lived, often due to the prototype nature of the projects. Examples of longer-lived deployments are monitoring the state of permafrost in the Swiss Alps: The PermaSense Project, PermaSense Live Data Browser and glacier monitoring.

Water/Wastewater Monitoring

There are many opportunities for using wireless sensor networks within the water/wastewater industries. Facilities not wired for power or data transmission can be monitored using industrial wireless I/O devices and sensors powered using solar panels or battery packs.
Vehicle Detection

Wireless sensor networks can use a range of sensors to detect the presence of vehicles ranging from motorcycles to train cars.

XLII. Write an essay about the applications for WSNs.

WiMAX’s Network Applications

Before you read

XLIII. Discuss the following with your partner:
113. Do you know anything about the difference between WiMAX and
Wi-Fi?

114. Do you know when the EU- wide frequency allocation for WiMAX was blocked?

XLIV. Comprehension questions:

115. Where is WiMAX used?

116. What do operators use in many cases?

117. Why are comparisons and confusion between WiMAX and Wi-Fi frequent?

118. What do typically fixed WiMAX networks have?

119. What kind of antennaes do usually WiMAX devices have?

WiMAX is a possible replacement candidate for cellular phone technologies such as GSM and CDMA or can be used as an overlay to increase capacity. It has also been considered as a wireless backhaul technology for 2G, 3G and 4G networks in both developed and poor nations.

WiMAX is a broadband platform and as such has much more substantial backhaul bandwidth requirements than legacy cellular applications. Therefore traditional copper wire line backhaul solutions are not appropriate. In many cases operators are aggregating sites using wireless technology and then presenting traffic on to fibre networks where convenient.

Deploying WiMAX in rural areas with limited or no internet backbone will be challenging as additional methods and hardware will be required to procure sufficient bandwidth from the nearest sources — the difficulty being in proportion to the distance between the end-user and the nearest sufficient internet backbone.

Comparisons and confusion between WiMAX and Wi-Fi are frequent, because both are related to wireless connectivity and Internet access.


WiMAX is a long range system, covering many kilometres that uses licensed or unlicensed spectrum to deliver a point-to-point connection to the Internet.


Different 802.16 standards provide different types of access, from portable (similar to a cordless phone) to fixed (an alternative to wired access, where the end user's wireless termination point is fixed in location.)


Wi-Fi uses unlicensed spectrum to provide access to a network.


Wi-Fi is more popular in end user devices.


WiMAX and Wi-Fi have quite different quality of service (QoS) mechanisms.


WiMAX uses a mechanism based on connections between the base station and the user device. Each connection is based on specific scheduling algorithms.


Wi-Fi has a QoS mechanism similar to fixed Ethernet, where packets can receive different priorities based on their tags.

Wi-Fi runs on the Media Access Control's CSMA/CA protocol, which is connectionless and contention based, whereas WiMAX runs a connection-oriented MAC.

 WiMAX can either operate at higher bitrates or over longer distances but not both: operating at the maximum range of 50 km increases bit error rate and thus results in a much lower bit rate. Conversely reducing the range (to <1 km) allows a device to operate at higher bitrates. There are no known examples of WiMAX services being delivered at bit rates over around 40 Mbit/s.

Typically fixed WiMAX networks have a higher-gain directional antenna installed near the client (customer), which results in greatly increased range and throughput. Mobile WiMAX networks are usually made of indoor "Customer-premises equipment" (CPE) such as desktop modems, laptops with integrated Mobile WiMAX or other Mobile WiMAX devices. Mobile WiMAX devices typically have Omni directional antennae which are of lower-gain compared to directional antennas but are more portable.
Like most wireless systems available bandwidth is shared between users in a given radio sector, so performance could deteriorate in the case of many active users in a single sector. In practice most users will have a range of 2-3 Mbit/s services and additional radio cards will be added to the base station to increase the number of users that may be served as required.

Because of these limitations the general consensus is that WiMAX requires various granular and distributed network architectures to be incorporated within the IEEE 802.16 task groups. This includes wireless mesh, grids, network remote station repeaters which can extend networks and connect to backhaul.

3G cellular phone systems usually benefit from already having entrenched infrastructure, having been upgraded from earlier systems. Users can usually fall back to older systems when they move out of range of upgraded equipment, often relatively seamlessly.

In some areas of the world the wide availability of UMTS and a general desire for standardization has meant spectrum has not been allocated for WiMAX: in July 2005 the EU-wide frequency allocation for WiMAX was blocked.
XLV. Answer this essay question: Why are comparisons and confusion between WiMAX and Wi-Fi frequent?

Shader
Before you read

XLVI. Discuss the following with your partner:

120. Do you know what a shader is used for?
121. Do you know how many types of shaders there are?

XLVII. Comprehension questions:

122. Where was the term "Shader" originated from?

123. What types of shaders are there?

124. What is the purpose of vertex shaders?

125. What is the function of pixel shaders?

126. What are shaders written for?

In the field of computer graphics a shader is a set of software instructions, which is used primarily to calculate rendering effects on graphics hardware with a high degree of flexibility. Shaders are used to program the graphics processing unit (GPU) programmable rendering pipeline, which has mostly superseded the fixed-function pipeline that allowed only common geometry transformation and pixel shading functions.

The term "Shader" originated with Pixar's RenderMan - a program that takes an entire description of a scene including camera positions, object geometry and renders the final output. RenderMan was introduced in 1989. Such computer-generated imagery (CGI) became more and more prolific in movies and television.

Consumer-level computer graphics hardware was also evolving rapidly and new features were implemented on "commodity" boards that rivalled expensive dedicated graphics workstations. The video game industry began to utilize newly-created powerful-yet-cheap 3D graphics hardware in PCs and game consoles. Light maps in particular were soon finding their way into games, followed by bump maps and procedural vertex generation. The continuing desire for more complex visual effects pushed the computing industry forward and previously fixed-function graphics processors received ever more programmable designs as manufacturing technology progressed. These more programmable GPUs allowed more complex effects, including pixel and vertex shader programs.

Types of shaders

The Direct3D and OpenGL graphic libraries use three types of shaders.

Vertex shaders are run once for each vertex given to the graphics processor. The purpose is to transform each vertex's 3D position in virtual space to the 2D coordinate at which it appears on the screen. Vertex shaders can manipulate properties such as position, colour and texture coordinate, but cannot create new vertices. The output of the vertex shader goes to the next stage in the pipeline, which is either a geometry shader if present or the rasterizer otherwise.

Geometry shaders can add and remove vertices from a mesh. Geometry shaders can be used to generate geometry procedurally or to add volumetric detail to existing meshes that would be too costly to process on the CPU. If geometry shaders are being used, the output is then sent to the rasterizer.

Pixel shaders also known as fragment shaders calculate the colour of individual pixels. The input to this stage comes from the rasterizer, which fills in the polygons being sent through the graphics pipeline. Pixel shaders are typically used for scene lighting and related effects such as bump mapping and colour toning. Pixel shaders are often called many times per pixel for every object that is in the corresponding space, even if it is occluded, the Z-buffer sorts this out later.

As these shader types are processed within the GPU pipeline, the following gives an example how they are embedded in the pipeline.
The CPU sends instructions (compiled shading language programs) and geometry data to the graphics processing unit located on the graphics card.

Within the vertex shader the geometry is transformed and lighting calculations are performed. If a geometry shader is in the graphic processing unit, some changes of the geometries in the scene are performed. The calculated geometry is triangulated (subdivided into triangles). Triangles are transformed into pixel quads (one pixel quad is a 2 × 2 pixel primitive).

Shaders are written to apply transformations to a large set of elements at a time, for example, to each pixel in an area of the screen or for every vertex of a model. This is well suited to parallel processing and most modern GPUs have multiple shader pipelines to facilitate this vastly improving computation throughput.

Programming shaders

OpenGL (version 1.5 and newer) provides a C-like Shader language called OpenGL Shading Language or GLSL. In the Microsoft Direct3D API (Direct3D 9 and newer) shaders are programmed with High Level Shader Language or HLSL. It is very similar to Microsoft's HLSL.

XLVIII. Write an essay about the functions of shaders. Organize your ideas using the following words: first of all, next, furthermore, in addition, in a number of ways.
SIP Architecture

Before you read

XLIX. Discuss the following with your partner:
127. Do you know anything about the Session Initiation Protocol?

128. Do you know how many servers are used?

L. Comprehension questions:

129. What are two fundamental components of the Session Initiation Protocol?

130. What are the functions of different registers?

131. Who makes the two endpoints of the communication session?

132. In what roles does the SIP server act?

133. When are the redirect servers used?

There are two fundamental components that are used by the Session Initiation Protocol:


User agents, which are endpoints of a call (i.e. each of the participants in a call);

SIP servers, which are computers on the network that service requests from clients and send back responses.

User Agents

User agents are both the computer that is being used to make a call and the target computer that is being called. These make the two endpoints of the communication session. There are two components to a user agent: a client and a server. When a user agent makes a request (such as initiating a session), it is the User Agent Client (UAC) and the user agent responding to the request is the User Agent Server (UAS). As the user agent will send a message and then respond to another, it will switch back and forth between these roles throughout a session.

Even though other devices that are optional to various degrees, User Agents must exist for a SIP session to be established. Without them it would be like trying to make a phone call without having another person to call. One UA will invite the other into a session and SIP can then be used to manage and tear down the session when it is complete. During this time the UAC will use SIP to send requests to the UAS, which will acknowledge the request and respond to it. Just as a conversation between two people on the phone consists of conveying a message or asking a question and then waiting for a response, the UAC and UAS will exchange messages and swap roles in a similar manner throughout the session. Without this interaction communication couldn’t exist.

Although a user agent is often a software application installed on a computer, it can also be a PDA, USB phone that connects to a computer or a gateway that connects the network to the Public Switched Telephone Network. In any of these situations however the user agent will continue to act as both a client and a server, as it sends and responds to messages.

SIP Server

The SIP server is used to resolve usernames to IP addresses, so that requests sent from one user agent to another can be directed properly. A user agent registers with the SIP server, providing it with their username and current IP address, thereby establishing their current location on the network. This also verifies that they are online, so that other user agents can see whether they’re available and invite them into a session. Because the user agent probably wouldn’t know the IP address of another user agent, a request is made to the SIP server to invite another user into a session. The SIP server then identifies whether the person is currently online and if so, compares the username to their IP address to determine their location. If the user isn’t part of that domain and thereby uses a different SIP server, it will also pass on requests to other servers.

In performing these various tasks of serving client requests, the SIP server will act in any of several different roles:


Registrar server


Proxy server


Redirect server

Registrar Server

Registrar servers are used to register the location of a user agent who has logged onto the network. It obtains the IP address of the user and associates it with their username on the system. This creates a directory of all those who are currently logged onto the network and where they are located. When someone wishes to establish a session with one of these users, the Registrar server’s information is referred to, thereby identifying the IP addresses of those involved in the session.

Proxy Server

Proxy servers are computers that are used to forward requests on behalf of other computers. If a SIP server receives a request from a client, it can forward the request onto another SIP server on the network. While functioning as a proxy server the SIP server can provide such functions as network access control, security, authentication and authorization.

Redirect Server

The Redirect servers are used by SIP to redirect clients to the user agent they are attempting to contact. If a user agent makes a request, the Redirect server can respond with the IP address of the user agent being contacted.

LI. Answer this essay question: Describe the SIP architecture.
Lempel-Ziv-Welch (LZW)
Before you read

LII. Discuss with your partner:

134. Do you happen to know who Lempel was created by?

135. Do you know how the decompressor works?

LIII. Read the text and decide whether the statements are true or false:

136. Lempel is an improved implementation of the LZ78 algorithm.

137. The compressor doesn’t build a string translation table from the text being translated.

138. As each two-character string is stored, the first character is send to the output.

139. The decompressor doesn’t require the compressed text as an output.

140. The extension character is used as the end of the last word.

Lempel-Ziv-Welch (LZW) is a universal lossless data compression algorithm created by Abraham Lempel, Jacob Ziv and Terry Welch. It was published by Terry Welch in 1984 as an improved implementation of the LZ78 algorithm. The algorithm is designed to be fast to implement, but is not usually optimal because it performs only limited analysis of the data.

The compressor algorithm builds a string translation table from the text being compressed. The string translation table maps fixed-length codes (usually 12-bit) to strings. The string table is initialized with all single-character strings. As the compressor character-serially examines the text, it stores every unique two-character string into the table as a code/character concatenation with the code mapping to the corresponding first character. As each two-character string is stored, the first character is sent to the output. Whenever a previously-encountered string is read from the input, the longest such previously-encountered string is determined and then the code for this string concatenated with the extension character (the next character in the input) is stored in the table. The code for this longest previously- ncountered string is output and the extension character is used as the beginning of the next word.

The decompressor algorithm only requires the compressed text as an input, since it can build an identical string table from the compressed text as it is recreating the original text. However an abnormal case shows up whenever the sequence character/string/character/string/character (with the same character for each character and string for each string) is encountered in the input and character/string is already stored in the string table. When the decompressor reads the code for character/string/character in the input, it cannot resolve it because it has not yet stored this code in its table. This special case can be dealt with, because the decompressor knows that the extension character is the previously-encountered character.

LIV. Read the text again and give a talk about the work of the decompressor.

Data Compression with the Burrows-Wheeler Transform

Before you read

LV. Discuss with your partner:

141. Do you know what “BWT” is?
142. Do you know how BWT is performed?

LVI. Read the text and decide whether the statements are true or false:

143. BWT transforms a block of data into a format that is suited for compression.

144. BWT is performed on an entire block of data at once.

145. BWT operates only in memory.

146. A block of data transformed by the BWT can be compressed using standard technologies.

147. The real heart of the paper consists of the disclosure of the BWT algorithm.

In mathematics difficult problems can often be simplified by performing a transformation on a data set. For example, digital signal processing programs use the FFT to convert sets of sampled audio data points to equivalent sets of frequency data. Pumping up the bass or applying a notch filter is then just a matter of multiplying some frequency data points by a scaling factor. Performing an inverse FFT on the resulting points and voila, one can have a new audio waveform that has been transformed according to your specifications.

Michael Burrows and David Wheeler recently released the details of a transformation function that opens the door to some revolutionary new data compression techniques. The Burrows-Wheeler Transform or BWT transforms a block of data into a format that is extremely well suited for compression. It does such a good job at this, that even the simple demonstration programs outperform the state of the art programs.

The BWT is an algorithm that takes a block of data and rearranges it using a sorting algorithm. The resulting output block contains exactly the same data elements that it started with differing only in their ordering. The transformation is reversible, meaning the original ordering of the data elements can be restored with no loss of fidelity.

The BWT is performed on an entire block of data at once. Most of today's familiar lossless compression algorithms operate in streaming mode, reading a single byte or a few bytes at a time. But with this new transform we want to operate on the largest chunks of data possible. Since the BWT operates on data in memory, one may encounter files too big to process in one fell swoop. In these cases the file must be split up and processed a block at a time. The demo programs that accompany this article work comfortably with block sizes of 50Kbytes up to 250 Kbytes.

LVII. Read the text again and write an essay describing transformations using the BWT.

Principles and Design of Bit Torrent Protocol

Before you read

LVIII. Discuss the following with your partner:
148. Do you know anything about the Bit Torrent protocol?

149. Do you know what users browse to find a torrent of interest?

LIX. Comprehension questions:
150. How is the first user’s file called?
151. What is the main function of Bit Torrent?

152. When is the peer able to shift roles?

153. What is a peer?

154. What does the tracker maintain?

A user playing the role of file-provider makes a file available to the network. This first user's file is called a seed and its availability on the network allows other users, called peers, to connect and begin to download the seed file. As new peers connect to the network and request the same file, their computer receives a different piece of the data from the seed. Once multiple peers have multiple pieces of the seed, Bit Torrent allows each to become a source for that portion of the file. The effect of this is to take on a small part of the task and relieve the initial user, distributing the file download task among the seed and many peers. With Bit Torrent no one computer needs to supply data in quantities which could jeopardize the task by overwhelming all resources, yet the same final result—each peer eventually receiving the entire file—is still reached.

After the file is successfully and completely downloaded by a given peer, the peer is able to shift roles and become an additional seed, helping the remaining peers to receive the entire file. This eventual shift from peers to seeders determines the overall 'health' of the file (as determined by the number of times a file is available in its complete form).

A Bit Torrent client is any program that implements the Bit Torrent protocol. Each client is capable of preparing, requesting and transmitting any type of computer file over a network, using the protocol. A peer is any computer running an instance of a client.

To share a file or group of files a peer first creates a small file called a "torrent". This file contains metadata about the files to be shared and about the tracker, the computer that coordinates the file distribution. Peers that want to download the file must first obtain a torrent file for it and connect to the specified tracker, which tells them from which other peers to download the pieces of the file.

The peer distributing a data file treats the file as a number of identically sized pieces, typically between 64 KB and 4 MB each. The peer creates a checksum for each piece and records it in the torrent file. When another peer later receives a particular piece, the checksum of the piece is compared to the recorded checksum to test that the piece is error-free.

Torrent files are typically published on websites or elsewhere and registered with a tracker. The tracker maintains the lists of the clients currently participating in the torrent.

Users browse the web to find a torrent of interest, download it and open it with a Bit Torrent client. The client connects to the tracker(s) specified in the torrent file, from which it receives a list of peers currently transferring pieces of the file(s) specified in the torrent. The client connects to those peers to obtain the various pieces.

The effectiveness of this data exchange depends largely on the policies that clients use to determine to whom to send data. Clients may prefer to send data to peers that send data back to them, which encourages fair trading. But strict policies often result in suboptimal situations, such as when newly joined peers are unable to receive any data because they don't have any pieces yet to trade themselves or when two peers with a good connection between them do not exchange data simply, because neither of them takes the initiative.
LX. Read the text again and write an essay describing principles and design of Bit Torrent protocol.
Compiler Classification

Before you read

LXI. Discuss with your partner:

155. Do you know anything about using the compilers?

156. Do you know how the high-level languages are divided?

LXII. Read the text and say whether the statements are true or false:

157. The output of a cross compiler is designed to run a different platform.

158. Cross compilers are used for supporting a software development environment.

159. Basic is called a compiled language.

160. All languages are interpreted.

161. The output of some compilers can target hardware at a very high level.

One classification of compilers is by the platform on which their generated code executes. This is known as the target platform. A native or hosted compiler is one whose output is intended to run directly on the same type of computer and operating system as the compiler itself runs on. The output of a cross compiler is designed to run on a different platform. Cross compilers are often used when developing software for embedded systems that are not intended to support a software development environment. The output of a compiler that produces code for a virtual machine (VM) may or may not be executed on the same platform as the compiler that produced it. For this reason such compilers are not usually classified as native or cross compilers.

Higher-level programming languages are generally divided for convenience into compiled languages and interpreted languages. However there is rarely anything about a language that requires it to be exclusively compiled or exclusively interpreted. The categorization usually reflects the most popular or widespread implementation of a language, for instance, BASIC is sometimes called an interpreted language and C a compiled one, despite the existence of BASIC compilers and C interpreters.

In a sense all languages are interpreted with "execution" being merely a special case of interpretation performed by transistors switching on a CPU. Modern trends toward just-in-time compilation and byte code interpretation also blur the traditional categorizations.

There are some exceptions. Some language specifications spell out that implementations must include a compilation facility, for example, Common Lisp. Other languages have features that are very easy to implement in an interpreter, but make writing a compiler much harder, for example, APL, SNOBOL4 and many scripting languages allow programs to construct arbitrary source code at runtime with regular string operations and then execute that code by passing it to a special evaluation function. To implement these features in a compiled language programs must usually be shipped with a runtime library that includes a version of the compiler itself.

The output of some compilers may target hardware at a very low level, for example a Field Programmable Gate Array (FPGA) or structured Application-specific integrated circuit (ASIC). Such compilers are said to be hardware compilers or synthesis tools, because the programs they compile effectively control the final configuration of the hardware and how it operates. The output of the compilation are not instructions that are executed in sequence - only an interconnection of transistors or lookup tables.
LXIII. Read the text again and give the heading to every paragraph.

Front End

Before you read

LXIV. Discuss with your partner:
162. Do you know what the intermediate representation is?

163. Do you know what a token is?

LXV. Read the text and say whether the statements are true or false:

164. Atlas Autocode ia an example of a stopped language.

165. The software doing lexical analysis is called preprocessing.

166. The preprocessing occurs before lexical analysis.

167. Syntax analysis doesn’t involve parsing the token sequence to identify the syntax structure of the program.

168. It is impossible to fold multiple phases into one pass over the code in a compiler implementation.

The front end analyzes the source code to build an internal representation of the program called the intermediate representation or IR. It also manages the symbol table, a data structure mapping each symbol in the source code to associated information such as location, type and scope. This is done over several phases, which includes some of the following.

Line reconstruction
Languages which strop their keywords or allow arbitrary spaces within identifiers require a phase before parsing, which converts the input character sequence to a canonical form ready for the parser. The top-down, recursive-descent, table-driven parsers used in the 1960s typically read the source one character at a time and did not require a separate tokenizing phase. Atlas Autocode and Imp (and some implementations of Algol and Coral66) are examples of stropped languages whose compilers would have a Line Reconstruction phase.

Lexical analysis breaks the source code text into small pieces called tokens. Each token is a single atomic unit of the language, for instance a keyword, identifier or symbol name. The token syntax is typically a regular language, so a finite state automaton constructed from a regular expression can be used to recognize it. This phase is also called lexing or scanning and the software doing lexical analysis is called a lexical analyzer or scanner.

Preprocessing

Some languages, e.g. C require a preprocessing phase which supports macro substitution and conditional compilation. Typically the preprocessing phase occurs before syntactic or semantic analysis, e.g. in the case of C the preprocessor manipulates lexical tokens rather than syntactic forms. However some languages such as Scheme support macro substitutions based on syntactic forms.

Syntax analysis involves parsing the token sequence to identify the syntactic structure of the program. This phase typically builds a parse tree, which replaces the linear sequence of tokens with a tree structure built according to the rules of a formal grammar which define the language's syntax. The parse tree is often analyzed, augmented and transformed by later phases in the compiler.

Semantic analysis is the phase in which the compiler adds semantic information to the parse tree and builds the symbol table. This phase performs semantic checks such as type checking (checking for type errors) or object binding (associating variable and function references with their definitions) or definite assignment (requiring all local variables to be initialized before use), rejecting incorrect programs or issuing warnings. Semantic analysis usually requires a complete parse tree, meaning that this phase logically follows the parsing phase and logically proceeds the code generation phase, though it is often possible to fold multiple phases into one pass over the code in a compiler implementation.

LXVI. Read the text again and say which mechanism is being described.

Macintosh

Before you read

LXVII. Discuss with your partner:

169. Do you know who Mac was marketed by?

170. Do you know what the production of Mac is based on?

LXVIII. Read the text and decide whether the statements are true or false:

171. Current Mac systems are mainly targeted at the home, education, creative professional markets.

172. Production of Mac is based on vertical integration model.

173. Apple doesn’t use third party components.

174. The modern Mac is capable of running alternative systems.

175. Apple maintains a high degree control over the end product.

Macintosh commonly nicknamed Mac is a brand name which covers several lines of personal computers designed, developed and marketed by Apple Inc. The Macintosh 128K was released on January 24, 1984; it was the first commercially successful personal computer to feature a mouse and a graphical user interface (GUI) rather than a command line interface. Through the second half of the 1980s the company built market share only to see it dissipate in the 1990s as the personal computer market shifted towards IBM PC compatible machines running MS-DOS and Microsoft Windows. Apple consolidated multiple consumer-level desktop models into the 1998 iMac all-in-one, which sold extremely well and saw the Macintosh brand revitalized. Current Mac systems are mainly targeted at the home, education and creative professional markets. They are: the aforementioned (though upgraded) iMac and the entry-level Mac Mini desktop models, the workstation-level Mac Pro tower, the MacBook, MacBook Air and MacBook Pro laptops and the Xserve server.

Production of the Mac is based on a vertical integration model in that Apple facilitates all aspects of its hardware and creates its own operating system that is pre-installed on all Macs. This is in contrast to most IBM PC compatibles, where multiple vendors create hardware intended to run another company's software. Apple exclusively produces Mac hardware, choosing internal systems, designs and prices. Apple does use third party components, however current Macintosh CPUs use Intel's x86 architecture. The modern Mac like other personal computers is capable of running alternative operating systems such as Linux, FreeBSD and Microsoft Windows, the latter of which is considered to be the Mac's biggest competitor.

Hardware

Apple directly sub-contracts hardware production to Asian manufacturers maintaining a high degree of control over the end product. By contrast most other companies (including Microsoft) create software that can be run on a variety of third-party hardware. The current Mac product family uses Intel x86 processors. All Mac models ship with at least 1 GB RAM as standard. Current Mac computers use an ATI Radeon or Intel GMA graphics cards. Macs that ship with optical media drives include either a Combo Drive, a DVD player and CD burner all-in-one or the SuperDrive, a dual-function DVD and CD burner. Macs include two standard data transfer ports: USB and FireWire. USB was introduced in the 1998 iMac G3 and is ubiquitous today. FireWire is mainly reserved for high-performance devices such as hard drives or video cameras. Starting with a new iMac G5 released in October 2005 Apple started to include built-in iSight cameras to appropriate models and a media centre interface called Front Row that can be operated by remote control for accessing media stored on the computer.

Until 2005 Mac computers have shipped with a single-button mouse. In fact the Mac operating system did not natively support more than one mouse button until Mac OS X arrived in 2001. Apple released the four-button Mighty Mouse in August 2005 and a wireless version in July 2006 and began to ship it with new desktop Macs.

Software

The original Macintosh was the first successful computer to use a graphical user interface devoid of a command line. It used a desktop metaphor, depicting real-world objects like documents and a trashcan as icons on screen. The System software introduced in 1984 with the first Macintosh and renamed Mac OS in 1997, continued to evolve until version 9.2.2. In 2001 Apple introduced Mac OS X, based on Darwin and NEXTSTEP. Its new features included the Dock and the Aqua user interface. The most recent version is Mac OS X v10.5 "Leopard". In addition to Leopard all new Macs are bundled with assorted Apple-produced applications, including iLife, the Safari web browser and the iTunes media player.

Mac OS X enjoys a near-absence of the types of malware and spyware that affect Microsoft Windows users. Worms as well as potential vulnerabilities were noted in February 2006, which led some industry analysts and anti-virus companies to issue warnings that Apple's Mac OS X is not immune to viruses, as is commonly misconceived. However there has not been an outbreak of Mac malware and Apple routinely issues security updates for its software.

Following the release of the Intel-based Mac third-party virtualization software such as Parallels Desktop, VMware Fusion, and Crossover Mac began to emerge, allowing users to run Microsoft Windows or previously Windows-only software on Macs at near native speed. A BIOS compatibility module for Intel-based Macs allows users to run Windows natively. Apple also released Boot Camp, which helps users to install Windows XP or Vista, along with Mac-specific Windows drivers and dual boot between Mac OS X and Windows on these Macs. Because Mac OS X is less common than Microsoft Windows, less third-party software is available, although popular applications such as Microsoft Office are usually cross-platform and Mac versions run without Windows emulation.

LXIX. Read the text again and write a description of Mac’s hardware and software.

Mainframe Computer
Before you read

LXX. Discuss with your partner:

176. Do you know what for the mainframe computers are used?

177. Are the words “server”, “supercomputer”, “mainframe” synonymous?

LXXI. Read the statements and decide whether they are true or false:

178. Mainframes are usually used by large organizations.

179. The term is originated from the early mainframes.

180. Minicomputers are usually considered mainframes.

181. The main characteristic of mainframes is their speed.

182. These machines run only a year without interruption.

Mainframes are computers used mainly by large organizations for critical applications typically bulk data processing such as census, industry and consumer statistics and financial transaction processing. The term probably is originated from the early mainframes, as they were housed in enormous, room-sized metal boxes or frames. Later the term was used to distinguish high-end commercial machines from less powerful units.

Today in practice, the term usually refers to computers compatible with the IBM System/360 line, first introduced in 1965. Otherwise large systems that are not based on the System/360 are referred to as either "servers" or "supercomputers". However "server", "supercomputer" and "mainframe" are not synonymous. Some non-System/360-compatible systems derived from or compatible with older (pre-Web) server technology may also be considered mainframes. Most large-scale computer system architectures were firmly established in the 1960s and most large computers were based on architecture established during that era up until the advent of Web servers in the 1990s.

There were several minicomputer operating systems and architectures that arose in the 1970s and 1980s, but minicomputers are generally not considered mainframes. Many defining characteristics of "mainframe" were established in the 1960s, but those characteristics continue to expand and evolve to the present day. Modern mainframe computers have abilities not so much defined by their single task computational speed (usually defined as MIPS — Millions of Instructions Per Second) as by their redundant internal engineering and resulting high reliability and security, extensive input-output facilities, strict backward compatibility with older software and high utilization rates to support massive throughput. These machines often run for years without interruption, with repairs and hardware upgrades taking place during normal operation.

Software upgrades are only non-disruptive when Parallel Sysplex is in place with true workload sharing, so one system can take over another's application, while it is being refreshed. More recently there are several IBM mainframe installations that have delivered over a decade of continuous business service as of 2007, with hardware upgrades not interrupting service. Mainframes are defined by high availability, one of the main reasons for their longevity, because they are typically used in applications where downtime would be costly or catastrophic. The term Reliability, Availability and Serviceability (RAS) is a defining characteristic of mainframe computers. Proper planning (and implementation) is required to exploit these features.

LXXII. Write an essay about the main characteristics of mainframes.

Zonnon Compiler Architecture

Before you read

LXXIII. Discuss with your partner:
183. Do you know anything about the Zonnon compiler?

184. Do you know what it is written in?
LXXIV. Read the statements and decide whether they are true or false:
185. CCI is used as a code generation utility and integration platform.

186. CCI provides support for developing compilers on four levels.

187. Each AST node is an instance of an IR class.

188. The Zonnon compiler makes use of all the CCI features.

189. The compiler in its first pass creates its own Zonnon-oriented program tree.
The Zonnon compiler is written in C#. It accepts Zonnon program units and produces conventional NET assemblies containing MSIL code and metadata. The Common Compiler Infrastructure (CCI) provided by Microsoft is used as a code generation utility and integration platform. Technically the compiler is a single dill file that is directly integrated into Visual Studio. A small executable wrapper is added to make the command-line version.

The CCI provides support for developing compilers on three levels:

· High-level infrastructure (structures for building attributed program trees and methods for performing semantic checks on the trees)

· Low-level support (generating IL code and metadata)

· Integration service

From an idealistic point of view the CCI is a set of C# classes that comprehensively support the construction of compilers and other language tools for NET. In reality the support is not totally complete as, for example, lexical and syntactical analyses are left to the user. However using the CCI a full integration of the compiler plus development tools into Visual Studio becomes feasible.

From a conceptual point of view the organization of the compiler is quite traditional: the Scanner transforms the source text into a sequence of lexical tokens that are accepted by the Parser. Using CCI IR Classes, the Parser performs syntax analysis and builds an abstract syntax tree (AST) for the respective compilation unit. Each AST node is an instance of an IR class. The “semantic” actions of the compiler consist of a series of consecutive transformations of the AST built by the Parser. The final result of the transformations is a NET assembly.

It is worth noting that the Zonnon compiler does not make use of all of the CCI features. In particular instead of extending the CCI Intermediate Representation by language-specific nodes the compiler in its first pass creates its own Zonnon-oriented program tree. The main reason for the extra tree is a better separation of the language-oriented compiler part and the system-oriented compiler part.

Also the presence of two trees (instead of one) in the compiler reflects the semantic gap between Zonnon and the CLR. It seems to be principally advantageous to represent information about Zonnon programs in terms of a separate data structure that is independent of the target platform. Such a design leads to an optimal factoring with key tasks like name resolution and semantic control that manipulate the Zonnon tree being totally independent of the CLR and NET. Furthermore the conversion from the Zonnon tree to the CCI tree explicitly implements and encapsulates the mapping from the Zonnon language model to the CLR. Notice that functions are logically related with both the Zonnon tree and the CCI tree and are activated during the same compilation pass.

The Zonnon tree is extensively used for generating XML representations of Zonnon programs. In the future it will be also used for displaying structural information about Zonnon programs in Visual Studios’ Solution Explorer views (work currently in progress). The Zonnon compiler differs architecturally from most of the “conventional” compilers. In contrast to a “black box” approach which goal is hiding algorithms and data structures, the compiler presents itself as an open collection of resources. In particular data structures such as “token sequence” and “AST tree” are exhibited to the outside world via a special interface and are made available for reuse by various programs. The same is true for algorithmic compiler components. For example, it is possible to invoke the Scanner to read tokens from some specific extract of the source code and then have the Parser build a sub-tree for just this extract.

Note that an analogous architecture is used by the CCI framework to support a deepest possible integration of all participating compilers with the Visual Studio environment. For example, the CCI contains Scanner and Parser prototype classes serving as base classes for the Zonnon parser and scanner components respectively. The Zonnon Compiler is implemented in C# and its command line version is an ordinary CIL assembly, so basically it can be executed on any Linux platform using either of the frameworks Mono or Rotor. Nevertheless there are minor technical differences in how the GC works. Also there is no need on Linux to integrate the compiler with Visual Studio. For these reasons two versions of deployment are supported for the same compiler.

Eclipse IDE is a powerful software development environment that provides simple plug-in mechanisms for the support of new programming languages, for example, the Zonnon plug-in implements project creation, syntax color highlighting, syntax error highlighting, program outlining, compiler execution and application execution.

LXXV. Write an essay about the Zonnon compiler.
Computer Architecture

Before you read

LXXVI. Discuss with your partner:
190. Do you know what early computer buses were like?

191. What can you say about the generations of computer buses?
LXXVII. Read the statements and decide whether they are true or false:

192. Early computer buses were literally parallel electrical buses with multiple connections.

193. Modern computer buses can use both parallel and bit-serial connections.

194. All the equipment on the bus has to talk at a different speed.

195. Second generation bus systems separated the computer into three worlds.

196. Third generation buses tend to be very flexible in terms of their physical connections.
In computer architecture a bus is a subsystem that transfers data between computer components inside a computer or between computers. Unlike a point-to-point connection a bus can logically connect several peripherals over the same set of wires. Each bus defines its set of connectors to physically plug devices, cards or cables together. Early computer buses were literally parallel electrical buses with multiple connections, but the term is now used for any physical arrangement that provides the same logical functionality as a parallel electrical bus. Modern computer buses can use both parallel and bit-serial connections and can be wired in either a multidrop (electrical parallel) or daisy chain topology, or connected by switched hubs, as in the case of USB.
First generation
Early computer buses were bundles of wire that attached memory and peripherals. They were named after electrical buses or bus bars. Almost always there was one bus for memory and another for peripherals and these were accessed by separate instructions with completely different timings and protocols. One of the first complications was the use of interrupts. Early computers performed I/O by waiting in a loop for the peripheral to become ready. This was a waste of time for programs that had other tasks to do. Also if the program attempted to perform those other tasks, it might take too long for the program to check again, resulting in loss of data. Engineers thus arranged for the peripherals to interrupt the CPU. The interrupts had to be prioritized, because the CPU can only execute code for one peripheral at a time, and some devices are more time-critical than others.

Early microcomputer bus systems were essentially a passive backplane connected directly or through buffer amplifiers to the pins of the CPU. Memory and other devices would be added to the bus using the same address and data pins as the CPU itself used, connected in parallel. Communication was controlled by the CPU, which had read and written data from the devices as if they are blocks of memory, using the same instructions, all timed by a central clock controlling the speed of the CPU. Still devices interrupted the CPU by signaling on separate CPU pins. For instance, a disk drive controller would signal the CPU that new data was ready to be read, at which point the CPU would move the data by reading the "memory location" that corresponded to the disk drive. Almost all early microcomputers were built in this fashion, starting with the S-100 bus in the Altair.

In some instances most notably in the IBM PC, although similar physical architecture is employed, instructions to access peripherals (in and out) and memory have not been made uniform at all and still generate distinct CPU signals that could be used to implement a separate I/O bus. These simple bus systems had a serious drawback when used for general-purpose computers. All the equipment on the bus has to talk at the same speed, as it shares a single clock.

Increasing the speed of the CPU becomes harder, because the speed of all the devices must increase as well. When it is not practical or economical to have all devices as fast as the CPU, the CPU must either enter a wait state or work at a slower clock frequency temporarily, to talk to other devices in the computer. While acceptable in embedded systems this problem was not tolerated for long in general-purpose, user-expandable computers. Such bus systems are also difficult to configure when constructed from common off-the-shelf equipment. Typically each added expansion card requires many jumpers in order to set memory addresses, I/O addresses, interrupt priorities, and interrupt numbers.

Second generation
Second generation bus systems like NuBus addressed some of these problems. They typically separated the computer into two "worlds", the CPU and memory on one side, and the various devices on the other with a bus controller in between. This allowed the CPU to increase in speed without affecting the bus. This also moved much of the burden for moving the data out of the CPU and into the cards and controller, so devices on the bus could talk to each other with no CPU intervention. This led to much better "real world" performance, but also required the cards to be much more complex. These buses also often addressed speed issues by being "bigger" in terms of the size of the data path, moving from 8-bit parallel buses in the first generation to 16 or 32-bit in the second, as well as adding software setup (now standardized as Plug-n-play) to supplant or replace the jumpers.

An increasing number of external devices started employing their own bus systems as well. When disk drives were first introduced, they would be added to the machine with a card plugged into the bus, which is why computers have so many slots on the bus. But through the 1980s and 1990s new systems like SCSI and IDE were introduced to serve this need, leaving most slots in modern systems empty. Today there are likely to be about five different buses in the typical machine, supporting various devices.

Third generation
"Third generation" buses have been emerging into the market since about 2001, including HyperTransport and InfiniBand. They also tend to be very flexible in terms of their physical connections, allowing them to be used both as internal buses, as well as connecting different machines together. This can lead to complex problems when trying to service different requests, so much of the work on these systems concerns software design, as opposed to the hardware itself. In general these third generation buses tend to look more like a network than the original concept of a bus, with a higher protocol overhead needed than early systems, while also allowing multiple devices to use the bus at once.

LXXVIII. Read the text again and give the heading to every paragraph.
Reference materials
197. http://www.bartleby.com/61/97/C0539700.html
198. http://en.wikipedia.org

199. http://en.wikipedia.org/wiki/Web_design
200. http://en.wikipedia.org/wiki/Domain_name_registry
201. http://en.wikipedia.org/wiki/Web_hosting_service
202. http://www.miswebdesign.com/resources/articles/accessibility-intro.html
203. http://pleasantonwebdesignblog.com/2007/01/web-design-definition.html
204. http://www.webdesignref.com/chapters/01/ch1-06.htm
205. http://www.useit.com/alertbox/9705a.html
Светлана Алексеевна Ярунина
Хрестоматия
Практикум

Федеральное государственное бюджетное образовательное
учреждение высшего профессионального образования
 «Нижегородский государственный университет им. Н.И. Лобачевского».

603950, Нижний Новгород, пр. Гагарина, 23.

Подписано в печать . Формат 60х84 1/16.

Бумага офсетная. Печать офсетная. Гарнитура Таймс.

Усл. печ. л. 4,0. Уч.-изд.л.

Заказ № . Тираж экз.

Отпечатано в типографии Нижегородского госуниверситета

603000, г. Нижний Новгород, ул. Большая Покровская, 37

Лицензия ПД № 18-0099 от 14.05.01

PAGE
6

